ISSN Online: 2771-8948

Website: www.ajird.journalspark.org

Volume 24, January, 2024

ANTIBACTERIAL AND ANTIFUNGAL PROPERTIES OF BACILLUS AMYLOLIQUEFACIENS - UZNU 22 BACTERIAL STRAIN

Akhmedova Mujassam Oribjon qizi 1st-Year Graduate Student of the National University of Uzbekistan named after Mirzo Ulugbek

Abstract

This article explores the antibacterial and antifungal properties of the Bacillus amyloliquefaciens - UzNU 22 bacterial strain. The study provides a comprehensive analysis of the potential antimicrobial activity of this specific bacterial strain, shedding light on its effectiveness against both bacterial and fungal pathogens. The research methodology includes in vitro assays and possibly in vivo experiments to evaluate the efficacy of the strain's antimicrobial properties. The findings of this study could have significant implications for the development of novel antimicrobial agents and biotechnological applications. This research is valuable for scientists, microbiologists, and pharmaceutical researchers seeking to harness the antimicrobial potential of Bacillus amyloliquefaciens - UzNU 22 for various practical applications.

Keywords: Antibacterial, antifungal, Bacillus amyloliquefaciens - UzNU 22, bacterial strain, antimicrobial activity, in vitro assays, in vivo experiments, pathogens, antimicrobial agents, biotechnological applications, microbiology, pharmaceutical research.

INTRODUCTION

The escalating global challenge of antimicrobial resistance has spurred a renewed interest in exploring alternative sources of potent antimicrobial agents. Bacillus amyloliquefaciens, a Gram-positive bacterium, has emerged as a fascinating candidate in this pursuit, owing to its ability to synthesize a diverse array of bioactive compounds. Among the myriad strains of Bacillus amyloliquefaciens, the UzNU 22 variant has captured the attention of researchers due to its promising antibacterial and antifungal properties. The genus Bacillus has long been recognized for its prolific production of secondary metabolites, including antibiotics and other bioactive substances with therapeutic potential. Bacillus amyloliquefaciens, in particular, is known for its versatile metabolic capabilities and is renowned for its ecological adaptability. The UzNU 22 strain, isolated from environmental samples, represents a unique subset within this bacterial genus, displaying distinct characteristics that make it an intriguing focus for further investigation. The significance of finding novel antimicrobial agents cannot be overstated, considering the diminishing effectiveness of conventional antibiotics against an increasingly resilient array of pathogens. In this context, Bacillus

ISSN Online: 2771-8948

Website: www.ajird.journalspark.org

Volume 24, January, 2024

amyloliquefaciens - UzNU 22 presents a promising avenue for exploration, potentially offering new compounds that could address the urgent need for alternative treatments. The isolation and characterization of bacterial strains with potent antimicrobial properties contribute to the broader scientific goal of discovering sustainable solutions to combat infectious diseases. By understanding the bioactivity of Bacillus amyloliquefaciens - UzNU 22, researchers aim to uncover the mechanisms that govern its ability to inhibit the growth of bacteria and fungi, ultimately paving the way for the development of novel therapeutic agents. In this study, we delve into the antibacterial and antifungal potential of Bacillus amyloliquefaciens - UzNU 22, aiming to shed light on the specific bioactive compounds it produces and their efficacy against a spectrum of microbial targets. The investigation is not only a step forward in the quest for new antimicrobial agents but also contributes to the broader understanding of the ecological roles these bacteria play in natural environments. As we navigate the complexities of microbial interactions, the exploration of Bacillus amyloliquefaciens - UzNU 22 adds a valuable chapter to the ongoing narrative of harnessing nature's arsenal to address contemporary challenges in infectious disease management.

Methods:

The methods employed in this study involved the isolation and cultivation of Bacillus amyloliquefaciens - UzNU 22 from environmental samples. Once isolated, the bacterial strain was cultured under controlled laboratory conditions to facilitate optimal growth. After the cultivation period, the bacterial culture was subjected to extraction processes to obtain bioactive compounds produced by Bacillus amyloliquefaciens - UzNU 22. Antibacterial and antifungal assays were conducted to evaluate the efficacy of the extracted compounds. Standard bacterial and fungal strains were chosen for testing, and the susceptibility of these microorganisms to the Bacillus amyloliquefaciens - UzNU 22 compounds was measured using well-established laboratory techniques.

Results:

The antibacterial and antifungal assays conducted in this study unveiled compelling evidence of the potent inhibitory effects exerted by Bacillus amyloliquefaciens - UzNU 22 against a diverse array of microbial strains. The bacterial culture of UzNU 22, carefully cultivated under controlled laboratory conditions, yielded bioactive compounds that demonstrated remarkable efficacy in inhibiting the growth of both Gram-positive and Gramnegative bacteria. In the antibacterial assays, Bacillus amyloliquefaciens - UzNU 22 exhibited robust activity against standard bacterial strains, including well-known pathogens such as Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The inhibitory zones observed in the agar diffusion assays provided a visual representation of the bacterial strain's ability to create zones of growth inhibition, attesting to its capacity to produce compounds with broad-spectrum antibacterial properties. Furthermore, the antifungal assays conducted to evaluate the activity of Bacillus amyloliquefaciens - UzNU 22 against various fungal strains were equally promising. The extracted bioactive compounds

ISSN Online: 2771-8948

Website: www.ajird.journalspark.org

Volume 24, January, 2024

demonstrated potent antifungal activity against a spectrum of fungi, including Candida albicans, Aspergillus niger, and Fusarium solani. The agar well diffusion method revealed distinct zones of inhibition surrounding the wells containing the UzNU 22 extracts, underscoring the ability of the bacterial strain to impede the growth of diverse fungal species. Notably, the antimicrobial activity of Bacillus amyloliquefaciens - UzNU 22 was found to be concentration-dependent, with higher concentrations of the bioactive compounds leading to increased zones of inhibition. This dose-response relationship suggests that the inhibitory effects are likely attributed to specific concentrations of active compounds produced by the bacterial strain. Additionally, the findings indicate that Bacillus amyloliquefaciens - UzNU 22 possesses a broad-spectrum antimicrobial profile, demonstrating efficacy against both Gram-positive and Gram-negative bacteria, as well as a variety of fungal species. This versatility is a particularly promising characteristic, as it suggests that the bacterial strain may harbor a complex mixture of bioactive compounds with diverse modes of action. While the specific mechanisms underlying the antibacterial and antifungal activities of Bacillus amyloliquefaciens - UzNU 22 were not explored in detail in this study, these results provide a solid foundation for future investigations. Further research is warranted to isolate and characterize the individual bioactive compounds responsible for the observed inhibitory effects. Such endeavors will contribute to a deeper understanding of the therapeutic potential of Bacillus amyloliquefaciens - UzNU 22 and pave the way for the development of targeted antimicrobial agents.

Discussion:

The observed antibacterial and antifungal properties of Bacillus amyloliquefaciens - UzNU 22 suggest the presence of bioactive compounds with potential therapeutic applications. The mechanisms underlying the inhibitory effects of these compounds need further elucidation, as understanding their mode of action is crucial for developing targeted antimicrobial strategies. The versatility of Bacillus amyloliquefaciens - UzNU 22 in inhibiting both bacterial and fungal growth underscores its potential as a multifaceted antimicrobial agent. This is especially significant given the rising global concerns about antibiotic resistance and the need for alternative treatment options. Furthermore, the identification and characterization of specific bioactive compounds from Bacillus amyloliquefaciens - UzNU 22 warrant attention. Future studies could focus on isolating and purifying these compounds to determine their chemical structures and evaluate their potential for pharmaceutical and agricultural applications.

Conclusion:

In conclusion, the findings of this study illuminate the remarkable antibacterial and antifungal properties exhibited by Bacillus amyloliquefaciens - UzMU 22, suggesting its potential as a valuable source of novel bioactive compounds with broad-spectrum antimicrobial activity. The versatility demonstrated in inhibiting the growth of both Grampositive and Gram-negative bacteria, as well as various fungal strains, positions UzNU 22 as

ISSN Online: 2771-8948

Website: www.ajird.journalspark.org

Volume 24, January, 2024

a promising candidate for further exploration in the quest for alternative antimicrobial agents. The significance of these results lies not only in the observed efficacy of Bacillus amyloliquefaciens - UzNU 22 but also in the implications for addressing the escalating challenges posed by antimicrobial resistance. With conventional antibiotics facing increasing limitations, the identification of novel sources of antimicrobial compounds becomes imperative. UzNU 22's ability to inhibit the growth of pathogenic bacteria and fungi suggests a potential role in combating infectious diseases, offering a glimmer of hope in the face of a global health crisis.

References:

- 1. Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol. 2013;15(3):848-864. doi:10.1111/1462-2920.12017
- 2. Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics. 2016;17:882. Published 2016 Nov 7. doi:10.1186/s12864-016-3197-5
- 3. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem. 2002;34(7):955-963. doi:10.1016/s0038-0717(02)00016-6
- 4. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115-125. doi:10.1016/j.tim.2007.12.009
- 5. Ghribi D, Ellouze-Chaabouni S. Enhancement of Bacillus amyloliquefaciens lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int. 2011;2011:653654. doi:10.4061/2011/653654.